Pages

Minggu, 18 April 2010

Tugas 4b

1. Give the relationship that represents the dual of the Boolean property A + 1 = 1?

(Note: * = AND, + = OR and ' = NOT)

1. A * 1 = 1

2. A * 0 = 0

3. A + 0 = 0

4. A * A = A

5. A * 1 = 1

2. Give the best definition of a literal?

1. A Boolean variable

2. The complement of a Boolean variable

3. 1 or 2

4. A Boolean variable interpreted literally

5. The actual understanding of a Boolean variable

3. Simplify the Boolean expression (A+B+C)(D+E)' + (A+B+C)(D+E) and choose the best answer.

1. A + B + C

2. D + E

3. A'B'C'

4. D'E'

5. None of the above

4. Which of the following relationships represents the dual of the Boolean property x + x'y = x + y?

1. x'(x + y') = x'y'

2. x(x'y) = xy

3. x*x' + y = xy

4. x'(xy') = x'y'

5. x(x' + y) = xy

5. Given the function F(X,Y,Z) = XZ + Z(X'+ XY), the equivalent most simplified Boolean representation for F is:

1. Z + YZ

2. Z + XYZ

3. XZ

4. X + YZ

5. None of the above

6. Which of the following Boolean functions is algebraically complete?

1. F = xy

2. F = x + y

3. F = x'

4. F = xy + yz

5. F = x + y'

7. Simplification of the Boolean expression (A + B)'(C + D + E)' + (A + B)' yields which of the following results?

1. A + B

2. A'B'

3. C + D + E

4. C'D'E'

5. A'B'C'D'E'

8. Given that F = A'B'+ C'+ D'+ E', which of the following represent the only correct expression for F'?

1. F'= A+B+C+D+E

2. F'= ABCDE

3. F'= AB(C+D+E)

4. F'= AB+C'+D'+E'

5. F'= (A+B)CDE

9. An equivalent representation for the Boolean expression A' + 1 is

1. A

2. A'

3. 1

4. 0

10. Simplification of the Boolean expression AB + ABC + ABCD + ABCDE + ABCDEF yields which of the following results?

1. ABCDEF

2. AB

3. AB + CD + EF

4. A + B + C + D + E + F

5. A + B(C+D(E+F))

Tugas 4a : Tabel Kebenaran

TABEL BANTU

A

B

C

A'

B'

C'

B+C

B.C

1

1

1

0

0

0

1

1

1

1

0

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0

0

1

1

0

0

0

1

1

1

0

0

1

1

0

1

0

1

0

1

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

1

0

0

A.B'

A+B'

A.C

A+C

A'.B

A'+B

(A+B)'

(A.B)'

0

1

1

1

0

1

0

0

0

1

0

1

0

1

0

0

1

1

1

1

0

0

0

1

1

1

0

1

0

0

0

1

0

0

0

1

1

1

0

1

0

0

0

0

1

1

0

1

0

1

0

1

0

1

1

1

0

1

0

0

0

1

1

1

Hukum Komulatif

A+B

B+A

A.B

B.A

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

Hukum Asosiatif

(A+B)+C

A+(B+C)

(A.B).C

A.(B.C)

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

Hukum Identity

A+A

A

A.A

A.B+A.B'

(A+B).(A+B')

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Hukum Distributif

A.(B+C)

A.B+A.C

A+(B.C)

(A+B)(A+C)

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

Hukum Redudansi

A+A.B

A.(A+B)

A

0+A

0.A

1+A

1.A

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

1

1

1

1

0

1

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

A'+A

A'.A

A+A'B

A+B

A(A'+B)

A.B

1

0

1

1

1

1

1

0

1

1

1

1

1

0

1

1

0

0

1

0

1

1

0

0

1

0

1

1

0

0

1

0

1

1

0

0

1

0

0

0

0

0

1

0

0

0

0

0

Theoroma De Morgan’s

(A+B)'

A'.B'

(A.B)'

A'+B'

0

0

0

0

0

0

0

0

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

1

1

1

1

1

1

1

1